A Kolmogorov-type theorem for stochastic fields

نویسندگان

چکیده

We generalize the Kolmogorov continuity theorem and prove of a class stochastic fields with parameter. As an application, we derive solutions for nonlocal parabolic equations driven by non-Gaussian Lévy noises.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

Kolmogorov Theorem Revisited

Kolmogorov Theorem on the persistence of invariant tori of real analytic Hamiltonian systems is revisited. In this paper we are mainly concerned with the lower bound on the constant of the Diophantine condition required by the theorem. From the existing proofs in the literature, this lower bound turns to be ofO(ε1/4), where ε is the size of the perturbation. In this paper, by means of careful (...

متن کامل

Bishop-Phelps type Theorem for Normed Cones

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

متن کامل

Lindstedt Series and Kolmogorov Theorem

the KAM theorem from a combinatorial viewpoint. Lindstedt, Newcomb and Poincaré introduced a remarkable trigonometric series motivated by the analysis of the three body problem, [P]. In modern language, [G2], it is the generating function, that I call Lindstedt series here, ~h(~ ψ) = ∑∞ k=1 ε k~h(k)(~ ψ) of the sequence ~h(k)(~ ψ) of trigonometric polynomials associated with well known combinat...

متن کامل

The Kolmogorov–riesz Compactness Theorem

We show that the Arzelà–Ascoli theorem and Kolmogorov compactness theorem both are consequences of a simple lemma on compactness in metric spaces. Their relation to Helly’s theorem is discussed. The paper contains a detailed discussion on the historical background of the Kolmogorov compactness theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Analysis and Applications

سال: 2021

ISSN: ['1532-9356', '0736-2994']

DOI: https://doi.org/10.1080/07362994.2020.1862676